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Abstract We calculate optimal portfolio choices for a long-horizon, risk-
averse investor who diversifies among European stocks, bonds, real estate, and
cash, when excess asset returns are predictable. Simulations are performed
for scenarios involving different risk aversion levels, horizons, and statistical
models capturing predictability in risk premia. Importantly, under one of the
scenarios, the investor takes into account the parameter uncertainty implied by
the use of estimated coefficients to characterize predictability. We find that real
estate ought to play a significant role in optimal portfolio choices, with weights
between 12 and 44%. Under plausible assumptions, the welfare costs of either
ignoring predictability or restricting portfolio choices to traditional financial
assets only are found to be in the order of 150–300 basis points per year.
These results are robust to changes in the benchmarks and in the statistical
framework.
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Introduction

Predictability of asset returns is known to have powerful effects on the
structure and dynamics of optimal portfolio weights for long-horizon
investors. This conclusion holds across alternative models for predictability,
different data sets and asset allocation frameworks (e.g. Brennan et al.
1997) and (Campbell et al. 2003). However, most of this evidence has been
obtained in asset menus limited to traditional financial portfolios only, i.e.
stocks, bonds, and short-term liquid assets.1 On the contrary, contributions
available to asset managers with long horizons—such as pension fund
managers—are invested not only in equity and bonds, but in real estate
assets too.

For instance, as of the mid-1990s, in the UK 75.0 and 7.8% of managed
pension fund assets were held in stocks and real estate, respectively; the
corresponding percentage weights were 6.6 and 4.2 in Germany, and 26.9
and 2.2 in France. In the last two countries, long-term bonds represented
42.3 and 59.0% of long term portfolios (see Miles 1996, p.23), while bonds
were given a negligible weight in the UK.2 So it appears that considerable
heterogeneity exists in the relative weights assigned to stocks, bonds and real
estate. Although our paper aims at tracing out the normative implications of
predictability for optimal portfolio composition, we report results that shed
light on the preferences, investment horizons and predictability models under
which one may obtain rational choices consistent with either the German-
French pattern (dominated by bonds) or with the British one (dominated by
stocks). Additionally—since the evidence is for real estate weights between 2
and 8%—in this paper we ask whether existing data support the notion that
real estate ought to be included in long-horizon portfolios.

Our paper provides evidence on the effects of predictability on long-run
portfolio choice when the asset menu includes real estate assets. Furthermore,
our asset allocation results are based on predictability patterns characterizing
a European data set that has been left unexplored thus far. On the one hand,
both extensions are crucial to make the results found in the literature relevant
to the operational goals of long-horizon asset managers that commonly employ
asset menus not limited to financial securities only, and that fail to circumscribe
their portfolio choices to North American assets only. Obviously, among them,
European institutional investors occupy a leading position. On the other hand,
our results allow us to perform comparisons to parallel findings obtained from
comparable U.S. data on stocks, bonds and cash.

1Flavin and Yamashita (2002) represent an exception, although their focus is on life-cycle effects
at the household level.
2At the end of 2004 TIAA-CREF, one of the largest U.S. pension funds, invested about 17% of
assets in real estate (source: www.tiaa-cref.org).

www.tiaa-cref.org
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We use a simple vector autoregressive framework to capture predictable
time variations in the investment opportunity set (similarly to Campbell et al.
2003, Geltner and Mei 1995, and Glascock et al. 2001) and solve a standard
portfolio problem with power utility of terminal wealth. In most cases, the
optimal long-run weight to be assigned to real estate is large, between 23 and
44% of the initial wealth. It falls to 12–16% when we take into account the
(sometimes considerable) estimation uncertainty concerning the coefficients
characterizing the predictability model. The inclusion of real estate does not
alter the finding that predictable time variation in risk premia has first-order
effects for the optimal allocation between equities and bonds. Predictability
in risk premia also changes the attractiveness of real estate, by making it
relatively less risky than bonds but riskier than stocks as the horizon grows,
as well as increasingly more profitable than the other assets. Thus its portfolio
share increases the more with the investment horizon, the lower the investor
coefficient of risk aversion. Consideration of parameter uncertainty together
with predictability confirms that the share of bonds falls while that of real
estate grows with the investment horizon (see Barberis 2000). Additionally,
short-term securities (deposits, T-bills) become less risky and increasingly
substitute stock holdings, because their own lagged returns, realized inflation
and the term spread predict their return precisely.

Thus long-run investors with an interest in European assets ought to con-
sider the effects of time-varying risk premia because estimates of optimal
portfolio weights are structurally different when predictability is omitted.
This result applies especially when parameter uncertainty, which plagues our
estimates based on a monthly frequency, is taken into account. In fact, the
estimated welfare costs from ignoring predictability are large, in excess of
150 basis points per year for a long-run (10-year) investor with a plausible
coefficient of relative risk aversion of 5.

The costs of restricting the available asset menu to financial securities only,
thus ignoring real estate, are large as maintained with different arguments
by Hudson-Wilson et al. (2003). We find that for long-horizon investors the
resulting damage would be substantial, once more in the approximate order
of 200 basis points per year for a long-run, intermediate risk-averse investor.
Such a figure may however climb up to more than 400 basis points under some
configurations of the predictability model and assuming a higher coefficient of
relative risk aversion of 10.

Our paper contributes to three literatures. Several studies have compared
the risk and return characteristics of stocks, bonds, and cash to real estate,
and analyzed optimal portfolio choice in a mean variance framework (see
e.g. Li and Wang 1995; Ross and Zisler 1991), at times considering the
value of housing services provided to households (Pellizzon and Weber 2003).
However, considerable uncertainty still exists regarding optimal weight one
should assign to real estate. Among the others, Hudson-Wilson et al. (2003),
Karlberg et al. (1996), Liang et al. (1996), and Ziobrowski et al. (1999) calculate
optimal mean-variance US portfolios when the asset menu comprises property
whose return is measured by direct (appraisal-based) indices. They find that
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property ought to have a rather negligible weight, although its importance
increases when bootstrap methods are employed to account for the uncertainty
surrounding the distribution of returns (Gold 1993). On the opposite, Brounen
and Eicholtz (2003), Chandrashakaran (1999), and de Roon et al. (2002) find
much larger weights using longer time series and/or different data (e.g. hedged
REITs).

Geltner and Rodriguez (1995) allow for both public and private real estate
assets in portfolios, showing that the portfolio share of public (private) ones
increases (decreases) with the investor’s risk tolerance. They also recognize
that pension funds have longer horizons than other investors, thus computing
mean-variance portfolios on the basis of 5-year return statistics. We further
develop this latter insight, and explicitly examine the joint predictability of all
return series affecting both risk premia and variance of cumulative returns and
hence their desirability in a multi-period setting. This is of major importance
to long run investors, as it is well known that when returns are predictable
the mean-variance asset allocation may differ substantially from the long-term
one (see e.g. Bodie 1995) while the investor’s planning horizon is irrelevant
for portfolio choice when returns are independently and identically distrib-
uted (Samuelson 1969; Merton 1969). Therefore, by taking predictability into
account, our paper departs from the earlier literature on portfolio management
when real estate is available.

Secondly, the literature on strategic asset allocation has shown that stock
return predictability may affect long-term portfolio choice in two ways (e.g.
Campbell et al. 2003). First, an investor would have powerful incentives to reg-
ularly rebalance his portfolio as he receives new information on the conditional
risk premium of the available assets, even accounting for transaction costs at
the rebalancing points (Balduzzi and Lynch 1999). Secondly (and assuming
preferences differ from log-utility), even a buy and hold investor would modify
his asset holdings in order to exploit changes in the relative risk of assets
brought about by predictability. When the asset menu is restricted to financial
assets and a vector autoregressive (VAR) system captures return predictability
in US data, Campbell and Viceira (1999) and Barberis (2000) have shown that
mean-reversion in stock returns implies that average stock holdings generally
increase with the investors’ horizon. In our paper, we mostly focus on buy and
hold strategies and confirm that these results are not altered by the inclusion
of real estate.

Hoevenaars et al. (2005) also study long-run, buy-and-hold, mean-variance
asset allocation on US quarterly data that includes NAREITs, hedge funds,
commodities and credits returns. After detecting predictability patterns with
a restricted VAR on stocks and bonds, they find that public real estate is
very similar to stocks, in that it is a poor inflation hedge in the short run,
and becomes less risky once the investor horizon exceeds 4 years. In line with
earlier results by Froot (1995), they argue that listed real estate does not add
much value to a well-diversified portfolio. Our analysis focuses instead on
European, monthly data and employs an unrestricted VAR (as in Campbell
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et al. 2003) on real estate as well.3 The unrestricted nature of our predictability
model implies that real estate excess returns are not simply driven by a mixture
of stock and bond market performances. In our model/data, the risk of stocks
declines with the investment horizon, while real estate becomes both riskier
and more profitable than stocks. In this sense, it is not simply the “term
structure” of risk that makes real estate different from stocks, but the entire
structure of the reward-to-risk trade-off. Consequently, we find that European
real estate should play a major role in optimal portfolios and that the utility
loss from preventing an investor from holding it is substantial.

Two other papers closely related to ours are Barberis (2000) and Bharati
and Gupta (1992). Barberis investigates the portfolio choice effects of pre-
dictability when the latter is characterized through parametric VAR models
that are subject to estimation uncertainty. The uncertainty about parameters
is taken into account when solving long-run portfolio problems by adopting a
Bayesian approach and integrating over the posterior density of the parame-
ters to obtain the (multivariate) predictive density of future asset returns. We
adopt the same approach here because, given the monthly frequency of our
data, we face considerable estimation uncertainty. At least to our knowledge,
our paper is the first attempt at taking parameter uncertainty into account by
using an explicit Bayesian framework in a realistic asset menu that includes
real estate.

Bharati and Gupta (1992) model predictability in US asset returns—
including real estate, measured by returns on REITs—by using predictive
regressions that employ typical variables such as the 1-month T-bill rate, the
term spread, the default spread, monthly dummies, etc. (see Pesaran and
Timmermann 2000, for a discussion of possible predictors). Long-horizon
portfolio models are used to calculate optimal portfolio choices. They find
that predictability and real estate as an asset class are both important, in
the sense that active strategies involving real estate holdings outperform
passive ones, even in the presence of transaction costs. Their paper uses a
predictability framework that maximizes predictive R-squares by increasing
the number of state variables that make it difficult to apply the dynamic
portfolio optimization methods we use.

The plan of the paper is as follows. Section Asset Allocation Models briefly
outlines the methodology of the paper. Section Estimation Results describes
the data and reports results on their statistical properties, revealing the exis-
tence of exploitable predictable patterns in the dynamics of the investment
opportunity set. Section Optimal Asset Allocation with Real Estate is the
core section of the paper. We characterize optimal portfolios including real
estate, and compare them to the case without predictability and parameter

3Additionally, since our focus on long-run asset allocation is hardly compatible with approxima-
tion results (i.e. mean-variance becomes a poor approximation over larger and larger supports
for final wealth), we use numerical methods to compute optimal portfolio choices for an investor
endowed with standard, power utility preferences.
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uncertainty. In Section Welfare Cost Analysis, we calculate welfare costs
of ignoring either predictability or real estate. Section Robustness Checks
contains a few robustness checks involving both the asset allocation model and
the choice of the benchmarks for welfare cost calculations. Section Conclusions
concludes. A final Appendix collects further details on the statistical models
and solution methods employed in the paper.

Asset Allocation Models

Long run portfolio strategies may be calculated under two alternative as-
sumptions: either the investor takes classical estimates of the coefficients
characterizing the statistical model for asset returns as if they correspond to
(yet unknown) true parameters, what is normally called a classical (or plug-in)
approach; or the investor takes the uncertainty surrounding the coefficients
into account. In the latter case, the approach is usually a Bayesian one, in
which conditional expectations are calculated employing the predictive density
of future asset returns. In the following we distinguish between these two
different asset allocation frameworks.

Classical Portfolio Choice

Consider the time t problem of an investor who maximizes expected utility
from terminal wealth over a planning horizon of T months by choosing optimal
portfolio weights (ωt), when preferences are described by a power utility
function:4

max
ωt

Et

[
W1−γ

t+T

1 − γ

]
γ > 1.

Wealth can be invested in three risky asset classes: stocks, bonds, and real
estate. The menu is completed by a cash, short-term investment (1-month
deposits). Although some of the previous literature (e.g. Barberis 2000;
Campbell and Viceira 1999) has assumed that the continuously compounded
monthly real return on the risk free asset, r f

t , is simply constant over time,
this assumption is clearly counter-factual: short-term bond (deposit) returns
are time-varying. Therefore in what follows we model r f

t as random.5 The
continuously compounded excess returns between month t − 1 and t on stocks,
bonds and real estate are denoted by rs

t , rb
t , and rr

t , respectively. The fraction
of wealth invested in stocks, in bonds, and in real estate are ωs

t , ωb
t , and ωr

t ,

4Since Samuelson (1969) and Merton (1969), it is well known that except for the case of logarithmic
preferences (i.e. γ = 1), predictability gives rise to an intertemporal hedging demand. In this paper
we limit our attention to the empirically most plausible case of γ > 1.
5The notation r f

t is meant to signal that on [t − 1, t] a short-term deposit investment is free of risk.
This is clearly a simplification since on [t − 1, t] realized inflation remains random (although its
volatility is only 0.025% per month).
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respectively, so that ωt ≡ [ωs
t ωb

t ωr
t ]′. When initial wealth Wt is normalized to

one, the investor’s terminal wealth is given by:

Wt+T = ωs
t exp

(
Rs

t,T

) + ωb
t exp

(
Rb

t,T

) + ωr
t exp

(
Rr

t,T

)
+ (1 − ωs

t − ωb
t − ωr

t ) exp
(

R f
t,T

)
,

where Rs
t,T , Rb

t,T , Rr
t,T , and R f

t,T denote the cumulative returns on the three
portfolios between t and T:

Rs
t,T ≡

T∑
k=1

(
rs

t+k + r f
t+k

)
Rb

t,T ≡
T∑

k=1

(
rb

t+k + r f
t+k

)

Rr
t,T ≡

T∑
k=1

(
rr

t+k + r f
t+k

)
Rs

t,T ≡
T∑

k=1

(
r f

t+k

)

Call n the number of asset classes. Our baseline experiment concerns n = 4.

Furthermore, we follow the bulk of the literature imposing no-short sale
constraints. The buy-and-hold problem is:6

max
ωt

Et

⎡
⎢⎣

{
ωs

t exp
(

Rs
t,T

)
+ ωb

t exp
(

Rb
t,T

)
+ ωr

t exp
(

Rr
t,T

)
+ (

1 − ωs
t − ωb

t − ωr
t
)

exp
(

R f
t,T

)}1−γ

1 − γ

⎤
⎥⎦

s.t. 1 > ωs
t ≥ 0 1 > ωb

t ≥ 0 1 > ωr
t ≥ 0. (1)

Time-variation in (excess) returns is modeled using a Gaussian VAR(1)
framework:7

zt = μ + �zt−1 + εt, (2)

where εt is i.i.d. N(0, �), zt ≡ [rs
t rb

t rr
t r f

t x′
t]′, and xt represents a vector of

economic variables able to forecast future asset returns. Model (2) implies that

Et−1[zt] = μ + �zt−1,

i.e. the conditional risk premia on the assets are time-varying and function
of past excess asset returns, past short-term interest rates, as well as lagged
values of the predictor variable xt−1. The Appendix: Dynamic Rebalancing
Strategies shows that the problem can be then solved by employing simula-

6We also impose a further upper bound, ωs
t + ωb

t + ωr
t < 1 ( j = s, b , r). This means that we allow

ω
j
t and ωs

t + ωb
t + ωr

t to go up to 0.9999 but prevent it from reaching 1. These restrictions are
required to ensure that expected utility is defined when solving the Bayesian portfolio problem.
7We also experiment relaxing the first-order VAR constraint but find that for all exercises
performed in this paper, a first-order VAR provides the best trade-off between fit and parsimony,
i.e. it minimizes standard information criteria (AIC and BIC).
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tion methods similar to Kandel and Stambaugh (1996), Barberis (2000), and
Guidolin and Timmermann (2005):

max
ωt

1
N

N∑
i=1

[{
ωs

t exp
(

Rs,i
t,T

)
+ ωb

t exp
(

Rb ,i
t,T

)
+ ωr

t exp
(

Rr,i
t,T

)
+ (1 − ωs

t − ωb
t − ωr

t ) exp
(

R f,i
t,T

)}1 − γ

1 − γ

]
.

(3)

In the results that follow, we employ N = 100, 000 Monte Carlo trials in order
to minimize (essentially eradicate) any residual random errors in optimal
weights induced by simulations.

Bayesian Portfolio Choice

Since the true values of the coefficients in Eq. 2 are unknown, the uncer-
tainty on the actual strength of predictability induced by estimation risk may
substantially affect portfolio rules, especially over the long run, by increasing
the variance of cumulative future returns. As in Barberis (2000), parameter
uncertainty is incorporated in the model by using a Bayesian framework
that relies on the principle that portfolio choices ought to be based on the
multivariate predictive distribution of future asset returns. Such a predictive
distribution is obtained by integrating the joint distribution of θ and returns
p(zt,T , θ |Z̈t) with respect to the posterior distribution of θ , p(θ |Z̈t):

p(zt,T) =
∫

p(zt,T , θ |Z̈t)dθ =
∫

p(zt,T |Z̈t, θ)p(θ |Z̈t)dθ,

where Z̈t collects the time series of observed values for asset returns and the
predictor, Z̈t ≡ {zi}t

i=1. When parameter uncertainty is taken into account, the
maximization problem becomes:8

max
ωt

∫
W1−γ

t+T

1 − γ
p(zt,T |Z̈t, θ)p(θ |Z̈t) · dzt,T .

In this case, Monte Carlo methods require drawing a large number of times
from p(zt,T) and then ‘extracting’ cumulative returns from the resulting vector.
The Appendix: Dynamic Rebalancing Strategies provides further details on
methods and on the Bayesian prior densities, which we simply assume to be
of a standard uninformative diffuse type.9 In particular, since applying Monte

8As it is well known from the Bayesian econometrics literature, integrating the joint posterior for
zt,T and θ with respect to the posterior for θ delivers a density for returns with fatter tails which
simply reflect the additional (estimation) uncertainty implied by θ being random.
9Hoevenaars et al. (2006) show that the priors may have important effects on optimal portfo-
lio choices. While our paper uses the standard uninformative type to minimize these effects,
Hoevenaars et al. (2006) develop the concept of robust portfolio: the portfolio of an investor with
a prior that has minimal welfare costs when evaluated under a wide range of alternative priors.
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Carlo methods implies a double simulation scheme, in the following N is set
to a relatively large value of 300,000 independent trials that are intended to
approximate the joint predictive density of excess returns and predictors.10

Estimation Results

The Data

Since one of the contributions of this paper is to expand the asset menu to
real estate, we start by providing a sense for what the related data issues
may be. Real estate performance can be measured using two types of indices.
Direct indices are derived from either transaction prices or the appraised value
of properties, while indirect indices are inferred from the behavior of the
stock price of property companies that are listed on public exchanges. Indirect
real estate index returns normally show higher volatility than direct returns,
and—being subject to similar common market factors—tend to display higher
correlations with standard stock index returns. In this sense, indirect indices
are biased towards a finding of simultaneous correlation of real estate returns
with financial returns. On the other hand, the reliability of transaction-based,
direct indices is often made problematic both by the fact that properties may be
wildly heterogeneous and by the poor transparency of transaction conditions.
Additionally, direct, appraisal-based data are known to be affected by many
biases. For instance, the standard deviation of appraisal indices has been shown
to represent a downward biased estimate of the true value.11

Confronted with these pros and cons of direct vs. indirect real estate
indices, our paper employs an indirect index that reflects the price behavior
of property companies for which the market capitalization is over 50 million
US dollar for two consecutive months, the monthly Global Property Research
General Quoted Index Europe. The GPR General Quoted Index (henceforth,

10Furthermore, we approximate the (marginal) predictive density of the real short-term rate by
applying a truncation that corresponds to the minimum realized value of R f

t,T over each set of N
simulated path. As illustrated by Kandel and Stambaugh (1996, p. 402) when 100% of wealth

is invested in any of the risky assets , say the jth one, then Et

[
(1 − γ )−1W1−γ

t+T

]
= (1 − γ )−1

Et

[
exp((1 − γ )R j

t,T )
]

which is not finite because the t-student implied by our prior set-up does

not have a moment generating function. The problem is that wealth can be arbitrarily close to
zero when ω

j
t = 1 is allowed, so that utility is unbounded from below. In that case, the lower tail

of the predictive density does not shrink rapidly enough as utility approaches −∞, a property
that reflects the fat tails that characterize the t distribution. Our assumption on the upper bounds
characterizing the weights in Eq. 1 and the truncation are equivalent to forcing the agent to invest
at least some small fraction of her wealth in short-term deposits which are assumed not to imply
any probability of a 100% loss; as a result wealth is kept positive and existence of expected utility
is guaranteed.
11A comparison of direct appraisal-based vs. indirect indices is provided by Brounen and Eicholtz
(2003) and Geltner and Rodriguez (1995).
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GPRGQIE) is value-weighted and its purpose is to reflect the performance
of the universe of listed property companies. Companies are included when
at least 75% of operational turnover is derived from investment activities or
investment and development activities combined. The GPRGQIE is based
on a broad definition of real estate and includes office, residential, retail,
industrial, health care, hotel and diversified property companies. Importantly,
the values of the GPRGQIE are based on total return calculations, that is
both price and dividend returns. Thus, our simulations are by construction
meaningful for investors that choose real estate vehicles, such as property
companies and listed real estate funds, rather than direct property holdings.
We select the GPRGQIE index among the many indirect alternatives available
with the intent of maximizing the homogeneity of the asset classes under
analysis in terms of transaction costs—in the sense that only for the most liquid
real estate property companies an assumption of homogeneous frictions vs.
stocks and bonds is a sensible one. Our choice is also motivated by the current
growth of real estate funds in Europe that is going to increase the availability of
stock based, hence more liquid and better diversified, real estate assets. Data
on the GPR Quoted European index are available to us for the period January
1986–October 2005, for a total of 238 observations.

The remaining assets entering the investment opportunity set are European
short-term deposits, long-term bonds, and stocks. Also in this case, we collect
monthly data for the period January 1986–October 2005. The sample period
is well-balanced, including several, complete bull (1986, the late 1990s, 2004–
2005) and bear (1988–1991, 2000–2002) market cycles. Stock returns are
calculated from the Datastream European price index. The Merrill–Lynch
European Government Bond index returns (for maturities of 10 years or
longer) is used to capture the behavior of European bond returns for maturi-
ties exceeding 10 years. This is a constant maturity index. Money-market yields
are proxied by the 1-month Euribor provided by the European Central Bank
(before 1999 it is a GDP-weighted average of national Interbank euro rates).12

All indices are continuously compounded total return market-capitalization
indices, including both capital gains and income return components, expressed
in euros. Excess returns are calculated by deducting short-term cash returns
from total returns. The short-term investment yield is expressed in real terms
as the difference between the nominal yield and the monthly rate of change
in a Euro-zone total monthly inflation rate (covering an average of wholesale
and retail prices) provided by the European Central Bank.

Finally, the set of predictor variables xt is identified with three indicators
that have received considerable attention in the literature (see Ling et al. 2000).

12In terms of coverage, the GPRGQIE is based on prices of European quoted property com-
pany shares in the following countries: Austria, Belgium, Finland, France, Germany, Italy, the
Netherlands, Norway, Portugal, Sweden, Switzerland, and the United Kingdom. The Merrill–
Lynch Government Bond Index Europe is a market-capitalization weighted portfolio that tracks
the performance of bonds issued in the countries above as well as Greece, Ireland, Luxembourg,
and Spain. The Datastream equity index covers the stock markets in the countries above as well
as Prague, Budapest, Bucarest, Moscow, and Instanbul.
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Table 1 Summary statistics for asset returns and predictor variables

Portfolio/asset class Mean Median St. dev.

1-month Euribor (real) 0.034 0.034 0.006
Excess stock returns 0.057 0.129 0.169
Excess bond returns 0.045 0.069 0.069
Excess real estate returns 0.047 0.094 0.132
Inflation rate 0.026 0.024 0.003
Term spread 0.009 0.014 0.015
Dividend yield 0.029 0.030 0.006

The table reports summary statistics for monthly total return series (including dividends, coupon
distributions, adjusted for splits, etc.) for 1-month deposits (Euribor), stocks, bonds, and real
estate investments. The sample period is January 1986–October 2005. All returns are expressed
in euros. Return data for stocks, bonds, and real estate are in excess of the real short-term rate.
The real short-term rate is calculated by subtracting the Euro-zone total monthly inflation rate
from nominal returns. Means, medians, and standard deviations are annualized by multiplying
monthly moments by 12 and

√
12 , respectively. The last two row report statistics concerning the

term premium calculated as the difference between a Euro-zone yield on long-term government
bonds (10 year benchmark maturity) and the 1-month Euribor rate (both expressed in annualized
terms) the dividend yield calculated on the DataStream Equity Return Index

First, similarly to Campbell and Shiller (1988), Fama and French (1989), and
Kandel and Stambaugh (1996), we use the dividend yield on the Datastream
stock price index as a predictor of future excess asset returns.13 Second,
following the empirical asset allocation studies by Brandt (1999) and Campbell
et al. (2003), we also employ a term structure slope index—“term”—as a
predictor. This is defined as the difference between a Euro-zone yield on
long-term government bonds (10 year benchmark maturity) and the 1-month
nominal Euribor rate, both expressed in annualized terms The slope of the
yield curve is a well-known predictor of business cycle dynamics and as such
ought to be able to predict asset returns as well, in particular excess bond
returns. Third, we also employ the ex-post, realized inflation rate as a further
predictor. This will allow to add to the debate in the literature (e.g. Fama and
Schwert 1977; Ritter and Warr 2002) concerning whether stocks, bonds and/or
real estate may represent good hedges against inflation risk. Finally, also past
values of asset returns may forecast both future returns as well as values of the
three economic predictors.

In Table 1 we present summary statistics for the variables discussed above.
Over our sample period, the European real estate market fails to be ‘domi-
nated’ (in mean-variance terms) by the stock market, in spite of the euphoria
characterizing the so-called New Economy period of 1995–2000: real estate

13Due to its high persistence coupled with the strong negative correlation between shocks to
returns and shocks to the dividend yield, Campbell et al. (2003) find that the dividend yield
generates the largest hedging demand among a wider set of predictor variables. Among others,
Ling et al. (2000), Karolyi and Sanders (1998) Liu and Mei (1992) find that the dividend yield also
helps predicting REIT returns.
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Table 2 Correlation matrix

1-month Excess Excess Excess real Inflation Term Dividend
Euribor stock ret. bond ret. estate ret. rate spread yield

1-month Euribor (real) 1 −0.060 −0.021 −0.195 0.648 −0.831 0.564
Excess stock returns 1 0.103 0.644 −0.108 0.034 −0.181
Excess bond returns 1 0.163 −0.060 −0.070 0.057
Excess real estate returns 1 −0.184 0.112 −0.219
Inflation rate 1 −0.736 0.728
Term spread 1 −0.517
Dividend yield 1

The table reports linear correlation coefficients for monthly excess total return series and predictor
variables. The sample period is January 1986–October 2005. All returns are expressed in euros

investments performed slightly less than to equities in mean terms (4.7 and
5.7% per year in excess of short-term deposits, respectively), but were less
volatile than stocks (their annualized standard deviation is 13 vs. 17% for
equities).14 As one would expect, bonds have been less profitable (4.5%) but
also less volatile (6.9%) than stocks and real estate. However an annualized
real return of approximately 4.5% remains remarkable for bonds and is
explained by the declining short-term interest rates during the 1990s.

Table 2 provides simultaneous correlations. The table shows that the per-
formance across the four asset markets is only weakly correlated, with a peak
correlation coefficient of 0.64 between excess stock and real estate returns.
Under these conditions, there is wide scope for portfolio diversification across
financial and real assets. Excess bond returns are characterized by insignificant
correlations vs. both stock and real estate, and therefore we expect a large
demand for bonds for hedging reasons. As in much of the existing literature
(see e.g. Fama 1981; Balduzzi 1995), the contemporaneous correlation between
excess asset returns and inflation is negative.

Predictability in Excess Asset Returns

The estimation of the VAR model (2) reveals the extent of predictability in
risk premia. Results are reported in Table 3 for the case in which classical
estimation methods are employed; robust t-stats are reported in parenthesis,
under the corresponding point estimates. We highlight p-values equal to or
below 0.1 since the previous literature has shown that sometimes economically
important predictability structure may produce rather weak statistical p-values

14Most earlier papers report lower mean returns for real estate appraisal-based returns coupled
with lower volatility relative to stocks in both in the US (Ibbotson and Siegel 1984), the UK, and
Germany (Maurer et al. 2004). A similar pattern emerges in Hoevenaars et al. (2005) using US
real estate returns.
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(see e.g. Kandel and Stambaugh 1996).15 There is strong statistical evidence
that a time t increase in stock returns predicts a time t + 1 increase in real estate
returns. There is also some indication that lagged excess bond returns forecast
subsequent excess real estate returns. Therefore, real estate returns seems
already rather predictable employing past returns on the European bond and
stock markets as forecasting variables.16 This is consistent with stories by which
real estate markets adjust to the equity and bond market swings (e.g., booming
prices of financial assets cause wealth effects that spread over the real estate
market), see e.g. Li et al. (2003). Real estate performance is also negatively
related to the lagged short term real rate. The latter, in turn, appears to
respond to its own lagged value, previous inflation and previous term spread,
confirming the patterns found on U.S. data (Campbell et al. 2003).

We also find remarkable evidence of forecasting power of the dividend yield
for all excess return series and the real one-month T-bill. The resulting t-stats
are all in the neighborhood of 2 and the coefficients relating returns to past
values of the dividend yield are especially large for excess stock and real estate
returns. A one standard deviation decline in the dividend yield (say, caused by
increasing valuation ratios in the European stock market) forecasts a reduction
of 140 and 76 basis points in the equity and real estate risk premia, respectively.
Thus, while on US data the dividend yield is mainly known to forecast stock
returns, such evidence extends to bond and real estate excess returns on our
sample of European data.

Other predictor variables seem to play an important role. Excess stock
returns can be predicted, with negative sign, by lagged inflation, supporting
the view that mispricings prevail in the short run causing stocks to be a poor
hedge of inflation risk (see Ritter and Warr 2002).17 Real estate excess returns
also show an interesting negative (partial) correlation with lagged inflation.
Although the corresponding coefficient is economically small, one wonders
what assets may provide a satisfactory inflation hedge in the light of this
structure of the predictability patterns we have uncovered. Section Sensitivity
of Optimal Weights to the Predictors further investigates this point drawing a
distinction between short- and long-run hedges.

Contrary to the US evidence, bond risk premia are not related to the term
spread. Bonds thus represent the asset class with the lowest apparent degree

15We check that the estimated VAR(1) satisfies standard stability conditions for stationarity.
Similarly to most of the related literature (see e.g. Campbell et al. 2003) we do not correct for
small sample biases induced by persistence of a few of the predictors.
16The effects are economically important: A one standard deviation increase in monthly excess
equity returns forecasts a 66 basis points increase in excess real estate returns; a one standard
deviation increase in monthly excess bond returns predicts an 42 basis point increase in excess real
estate returns.
17Interestingly, the term spread and the real short-term rate fail to forecast the equity risk
premium. In the North-American literature, Avramov (2002) finds that the term premium predicts
U.S. stock returns, with a positive sign. Since Keim and Stambaugh (1986) it has been noticed that
US real interest rates forecast excess stock returns with a negative sign, even though the statistical
significance of the finding is normally borderline.
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of predictability. Finally, the real short term interest rate appears somewhat
predictable, although the coefficients are economically small. There is trace of
a failure of the ‘Fisher effect,’ in the sense that rising inflation increases the
(subsequent) real interest rate.

One last remark concerns the MLE estimates of the covariance matrix of
the VAR residuals, reported in the third panel of Table 3. The panel has
a peculiar structure, in the sense that the elements on and below the main
diagonal are volatilities and pairwise covariances, while the elements above the
main diagonal are pairwise correlations. Notice the relatively high correlation
(0.62) between excess stock and real estate returns residuals, an indication
that shocks unexplained by the VAR(1) model tend to appear simultaneously
for the stock and real estate markets. Moreover, the simultaneous sample
correlations between news affecting stock and real estate markets and news
involving the dividend yields are negative and significant (−0.94 and −0.62,
respectively): when shocks hit the dividend yield, our estimates imply a
contemporaneous negative effect on excess stock and real estate returns.
Such findings are ubiquitous in the literature analyzing US equity data (see
e.g. Barberis 2000), but they are novel with reference to European and—
more important—real estate markets. As we will see in Section Optimal
Asset Allocation with Real Estate, these features may have major portfolio
choice implications because they imply that stocks and—to a lesser extent—
real estate are a good hedge against adverse future dividend yield news.
However, there are other contemporaneous links among shocks with opposite
implications for portfolio shares. For instance, the lower panel of Table 3
shows that inflation surprises are negatively correlated with real estate return
innovations, while in the panel reporting VAR estimates, a higher inflation rate
to day predicts lower future returns on real estate. This suggests once again
that real estate may not represent a good (short-term) hedge against inflation
risks.18

Given the relatively large standard errors around some of our point pa-
rameter estimates in Table 3, we repeat the econometric analysis employing
Bayesian estimation techniques that—as stressed in Section Bayesian Portfolio
Choice—allow us to derive a joint posterior density for the ‘coefficients’
collected in θ. The tails of this density also measure the amount of estimation
risk present in the data. In fact, Table 4 reports the means of the marginal
posteriors of each of the coefficients in C (see the Appendix: Dynamic
Rebalancing Strategies for a definition) along with the standard deviation of
the corresponding marginal posterior, which gives an idea of its spread and
therefore a measure of the uncertainty involved. As typically found in the
finance literature, the posterior means in Table 4 only marginally depart from
the MLE point estimates in Table 3. However, the additional variance of the
slope coefficients caused by the existence of estimation uncertainty reduces the
predictive power of many economic variables, as in Avramov (2002).

18This result differs from the one in Fama and Schwert (1977), who however focus on private
residential property and find favourable inflation hedging properties.
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A few standard errors become relatively high, confirming the presence of
important amounts of estimation risk in this application. However, it remains
clear that the effects of lagged excess stock returns on real estate returns
and of lagged inflation on stock returns are characterized by tight posteriors
which suggest a non-zero effect. Also in this case, the effect of the dividend
yield on subsequent returns seems to be rather strong in terms of location
of the posterior density, although the tails are thick enough—in the case of
bonds and real estate—to cast some doubts on the precision with which effects
can be disentangled. Interestingly, the real short term rate remains precisely
predicted by its own lagged value. Moreover, an increase in the term spread
and in inflation precisely forecast a higher subsequent real short-term rate. For
completeness, we also report in the last panel of Table 4 the posterior means
and standard deviations (in parenthesis) for the covariance matrix �. Most
elements of � have very tight posteriors and all the implied correlations are
identical (to the fourth decimal) to those found under MLE.

Optimal Asset Allocation with Real Estate

Classical Portfolio Weights

We start with the simplest of the portfolio allocation exercises: we consider
an investor who commits her initial, unit wealth for T years and who ignores
parameter uncertainty. Initially, we set zt−1 to the full-sample mean values for
excess returns, the real short-term rate, and the three predictors.

Figure 1 reports optimal portfolio weights for horizons between 1 month
and 10 years, which is assumed to represent a typical long-horizon objective.
The exercise is repeated for two alternative values of the coefficient of
relative risk aversion, γ = 5 and 10, values typical in the empirical portfolio
choice literature. We experiment with a lower coefficient of risk aversion in
Section Low Risk Aversion. The importance of predictability in determining
portfolio choice can be assessed by comparing the results in Fig. 1 with those
one calculates assuming no predictability, i.e.

zt = μ + εt εt i.i.d. N(0, �), (4)

with constant covariances as well as risk premia. We find that the long-run asset
allocations in the presence of predictability are rather different than those ob-
tained under the i.i.d. benchmark.19 For instance, when γ = 5, the percentages
to be invested in bonds are 23 vs. 69% under no predictability, 33 vs. 26% for

19As discussed in the Introduction, under Eq. 4 the optimal portfolio weights become independent
of the horizon. In the following we compare asset allocations under IID with those obtained under
(2) for the T = 10 years case.
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Fig. 1 Buy-and-hold optimal
allocation—ignoring
parameter uncertainty. The
graphs plot the optimal
portfolio weights as a function
of the investment horizons
when returns follow a
Gaussian VAR(1) model and
parameter uncertainty is
ignored (i.e. classical MLE
estimates are employed). Two
alternative coefficients of
relative risk aversion are
employed

Risk aversion (γ) of 5

0 21 3 4 6 7 85 9 10

0 21 3 4 6 7 85 9 10

Horizon (in years)

Stocks Bonds Real Estate Cash

Risk aversion (γ) of 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Horizon (in years)

Stocks Bonds Real Estate Cash

stocks, and 44 vs. 5% for real estate.20 In this metric predictability implies a
shift out of bonds by 46%, and into stocks (+7%) and real estate (+39%). The
interpretation is that the assets whose long-run risk/return trade-off is mostly
improved by the mean-reversion effects implied by Eq. 2 are in lower demand
under i.i.d. than under an asset allocation model in which predictability is taken
into account. Remarkably, cash (short-term deposits) is never demanded, i.e.
the presence of relatively safer bonds with low correlation coefficients satisfies
the risk-return trade-offs of even highly risk-averse investors (γ = 10) without
involving the lowest variance assets.

Predictability also changes the relative attractiveness of real estate versus
stocks and bonds. A mean-variance investor would have a larger portfolio

20The corresponding numbers are (for bonds, stocks, and real estate, respectively) 51 vs.76%, 26
vs. 15%, 23 vs. 9% when γ = 10. These real estate shares are higher than the typical finding in the
North American literature—based on simple mean-variance static portfolio theory. For instance,
Karlberg et al. (1996) and Ziobrowski et al. (1999) find that the optimal fraction of wealth to be
allocated in real estate is around 9%, in the range of 3–15%. An exception is the combined weight
of public and private real estate in Geltner and Rodriguez (1995) for a 5-year horizon, ranging
between 10 and 55%.
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weight invested in bonds because of their high unconditional Sharpe ratio (0.19
on a monthly basis) in our sample period. When predictability is introduced,
already for short horizons between 1 and 12 months, the demand for bonds
declines (e.g. to 60% for T = 12 months when γ = 5), while the share of stocks
and real estate starts increasing. In fact, for moderate risk aversions, a strong
preference for real estate investments appears as the horizon grows beyond 4–
5 years. Consistently with results in the literature (see Kandel and Stambaugh
1996; Barberis 2000), the weight invested in riskier assets appears to be a
monotone increasing function of the investment horizon. For intermediate
risk aversion (γ = 5) the optimal shares invested in real estate and equity
respectively grow from 9 and 30% for a one-year horizon to 44 and 33%
for a 10-year horizon. The explanation is either that predictability in the
risk premium and contemporaneous correlation in shocks make risky assets
less risky than what is conveyed by their standard deviations,21 or that the
perception of risk premia on the different assets must favor real estate and—to
a lesser extent—stocks over bonds in the long-run. Clearly, both these effect
may in principle become stronger the longer the horizon an investor has over
which to exploit the forecastability patterns, as shown by Fig. 1.

Table 5 helps interpreting these horizon effects due to predictability by
reporting the values of the cumulative conditional expectations of excess
returns and of the real-short term rate predicted T−month ahead when the
model in Eq. 2 is initialized to full-sample means, zt = z̄. The table performs
the same operation with respect to volatilities and correlations (covariances).
In the classical case (panel a), the formulas employed are the standard ones for
sums of (conditionally) multivariate normal returns (T ≥ 1):

Et

[
T∑

k=1

zt+k

]
= Tμ + (T − 1)�μ + (T − 2)�2μ +

... + �T−1μ + (� + �2 + ... + �T)zt−1

Vart

[
T∑

k=1

zt+k

]
= � + (I + �)�(I + �)′ + (I + � + �2)�(I + � + �2)′ +

...+ (I + � + ... + �T−1)�(I + � + ... + �T−1)′,

21This effect is related to the presence of substantial negative serial correlation between shocks to
predictor variables and risk premia, for those predictors that forecast higher, subsequent returns.
This is the case for all asset returns series vs. the dividend yield. The economic interpretation is
that when the predictors fall unexpectedly (i.e. they are hit by some adverse shock), the negative
contemporaneous correlations imply that the news will be likely accompanied by a positive,
contemporaneous shock to (excess) returns. On the other hand, a currently diminished value of
the predictor forecasts future lower risk premia. Hence the parameter configuration implied by the
data leads to a built-in element of negative serial correlation, as it is easy to show that processes
characterized by negative serial correlations are less volatile in the long- than in the short-run, due
to mean-reversion effects.
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Table 5 Forecasts of risk premia, sharpe ratios, and correlations as a function of the investment
horizon

Moments/Object Investment horizon

T = 1 T = 12 T = 24 T = 48 T = 60 T = 120

Panel (a)—Classical forecasts from VAR(1) model

Stocks—risk premium 0.060 0.062 0.064 0.065 0.066 0.068
Stocks—volatility 0.163 0.148 0.132 0.109 0.122 0.122
Bonds—risk premium 0.048 0.046 0.047 0.047 0.047 0.047
Bonds—volatility 0.069 0.066 0.065 0.065 0.064 0.064
Real estate—risk premium 0.048 0.056 0.063 0.074 0.079 0.099
Real estate—volatility 0.125 0.135 0.134 0.147 0.156 0.201
Real short rate—mean 0.036 0.032 0.030 0.028 0.026 0.021
Real short rate—volatility 0.001 0.005 0.009 0.017 0.021 0.032
Stocks-bonds correlation 0.097 0.048 0.053 0.087 0.102 0.150
Stocks-real estate corr. 0.624 0.654 0.589 0.523 0.506 0.472
Stocks-cash correlation 0.000 0.000 0.000 −0.001 −0.003 −0.013
Bonds-real estate corr. 0.177 0.183 0.273 0.423 0.473 0.603
Bonds-cash correlation 0.120 −0.204 −0.447 −0.615 −0.646 −0.706
Real estate-cash corr. −0.029 −0.092 −0.320 −0.596 −0.671 −0.838

Panel (b)—no predictability (IID) model

Stocks—risk premium 0.059 0.059 0.059 0.059 0.059 0.059
Stocks—volatility 0.163 0.163 0.163 0.163 0.163 0.163
Bonds—risk premium 0.045 0.045 0.045 0.045 0.045 0.045
Bonds—volatility 0.068 0.068 0.068 0.068 0.068 0.068
Real estate—risk premium 0.049 0.049 0.049 0.049 0.049 0.049
Real estate—volatility 0.123 0.123 0.123 0.123 0.123 0.123
Real short rate—mean 0.033 0.033 0.033 0.033 0.033 0.033
Real short rate—volatility 0.001 0.001 0.001 0.001 0.001 0.001
Stocks-bonds correlation 0.097 0.097 0.097 0.097 0.097 0.097
Stocks-real estate corr. 0.624 0.624 0.624 0.624 0.624 0.624
Stocks-cash correlation 0.000 0.000 0.000 0.000 0.000 0.000
Bonds-real estate corr. 0.177 0.177 0.177 0.177 0.177 0.177
Bonds-cash correlation 0.000 0.000 0.000 0.000 0.000 0.000
Real estate-cash corr. 0.000 0.000 0.000 0.000 0.000 0.000

Panel (c)—Bayesian forecasts from VAR(1) model

Stocks—risk premium 0.060 0.062 0.064 0.065 0.066 0.065
Stocks—volatility 0.170 0.165 0.161 0.182 0.203 0.894
Bonds—risk premium 0.048 0.046 0.047 0.047 0.048 0.052
Bonds—volatility 0.069 0.073 0.078 0.095 0.106 0.367
Real estate—risk premium 0.048 0.056 0.063 0.074 0.079 0.105
Real estate—volatility 0.128 0.150 0.160 0.203 0.233 0.676
Real short rate—mean 0.036 0.032 0.030 0.028 0.026 0.019
Real short rate—volatility 0.001 0.006 0.011 0.023 0.029 0.098
Stocks-bonds correlation 0.091 0.043 0.032 0.010 −0.014 −0.351
Stocks-real estate corr. 0.625 0.657 0.591 0.515 0.490 0.586
Stocks-cash correlation −0.037 0.102 0.020 −0.068 −0.066 0.304
Bonds-real estate corr. 0.176 0.180 0.258 0.390 0.432 0.222
Bonds-cash correlation 0.124 −0.196 −0.432 −0.618 −0.661 −0.714
Real estate-cash corr. −0.023 −0.082 −0.282 −0.528 −0.591 −0.396

The first panel of the table reports the forecasts of the first two moments for cumulative
(T-month horizon) returns implied by the MLE estimates of the Gaussian VAR(1) model. As a
benchmark, the second panel reports the same statistics for the IID case. The third panel reports
equivalent forecasts derived (in this case by simulation) from the posterior Bayesian estimates of
the Gaussian VAR(1) model
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where I is the identity matrix of dimension n and �k ≡ ∏k
i=1 �.22 For compar-

ison, panel b reports moments under the null of no predictability, i.e. when

Et

[
T∑

k=1

zt+k

]
= Tμ Vart

[
T∑

k=1

zt+k

]
= T�.

Therefore the table reports the “term structure” of the reward-to-risk trade-
off, in the sense recently stressed by Guidolin and Timmermann (2006) and
Campbell and Viceira (2005). Careful inspection of the table reveals that the
horizon effects in portfolio weights previously reported cannot be explained by
changing, time-varying volatility: the annualized variance of excess real estate
returns grows with the horizon much faster in the presence of predictability,
as effects associated with inflation and the short-term real rate produce mean
aversion in real estate returns. For instance, at a 10-year horizon, real estate
volatility is 64% (i.e. 20% per year) under Eq. 2 vs. 39% (12% per year)
in a misspecified IID framework. On the contrary, the risk of stocks grows
considerably slower than what would happen in the absence of predictability,
consistent with mean reverting stock returns. Thus, the predicted volatility of
cumulative excess real estate returns is larger than the volatility of excess stock
returns for horizons exceeding 2 years.23 Furthermore, conditional correlations
between long-term bonds and real estate cumulative excess returns increase
from 0.18 to 0.60 (they are constant vs. T in the no-predictability case). On
the opposite, the correlation between bonds and stocks remains below 0.15
despite an increasing trend. Therefore it is unlikely that correlations involving
real estate excess returns may explain the steep upward sloping schedule found
in the case of intermediate risk aversion (γ = 5).24

As a matter of fact, Table 5 shows that the horizon effects in portfolio
weights can be traced back to forecasts of future long-run risk premia that
are steeply increasing in the time horizon for real estate and—to a lesser
extent—for equities. The expected 1-month risk premia implied by Eq. 2 are
approximately equal for stocks and real estate (at roughly 5% per annum),
while the 10-year cumulative conditional risk premium on real estate (9.9%
per annum) exceeds the equity premium (6.8% per annum). Real estate is
simply anticipated to provide higher excess returns over long-horizons. This
effect explains why the upward sloping shape for real estate is also found for
highly risk averse investors (γ = 10), although in this case the equity portfolio

22In the Bayesian case (panel c), we use the simulation method described in Appendix:
Dynamic Rebalancing Strategies to obtain long-horizon returns and approximate risk premia,
variances, and covariances simply by computing these moments over a large numbers of Monte
Carlo trials (N = 300, 000). These results are described in Section Parameter Uncertainty.
23The real short term rate is strongly mean averting, i.e. rolling over 1-month deposits is much
riskier in the long run than it is in the short run.
24The correlation between real estate excess returns and real short-term rate subtiantially drops
(from −0.03 to −0.84) as T increases. However, the same patterns can be observed for stocks
and especially bonds. Moreover, correlation patters are the more important, the more the assets
involved are volatile, which is hardly the case for 1-month cash deposits.
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share remains higher than the real estate share at all horizons. Overall, it seems
that ignoring predictability altogether would lead to grossly inappropriate asset
allocations, with the bias growing with the investment horizon. Section Cost of
Ignoring Predictability further investigates the welfare losses resulting from
disregarding predictability.

Finally, Fig. 1 shows another key result: the optimal allocation to bonds
is generally monotone decreasing with T. This is explained by the statistical
properties of the vector zt in Table 3. In particular, notice that bonds display a
negligible covariance with the dividend yield (with correlation of −0.15 only).
This means that news affecting the dividend yield will essentially leave current,
realized bond returns unchanged and forecast future changes in risk premia
of the opposite sign as the news. Therefore bonds will be characterized by a
variance that grows approximately as a linear function of T. Combined with
increasing correlations with both stocks and real estate (see Table 5, panels
a and c), this makes bonds increasingly riskier—relative to stocks and real
estate—as the horizon lengthens. At the same time, cumulative bond excess
returns fail to increase as fast as those on real estate, thus reducing the relative
attractiveness of bonds especially for the least risk averse investors, like in the
upper panel of Fig. 1.

In conclusion, a classical analysis implies that real estate ought to have an
important role in buy-and-hold portfolio choices. Depending on the assumed
coefficient of relative risk aversion, we have found optimal long-run real estate
weights between 23 and 44% of the available wealth for sensible risk aversion
parameters. Predictability makes demand schedules for the most risky assets a
monotone increasing function of the investment horizon and makes real estate
more attractive than stocks as the horizon grows.

Parameter Uncertainty

We calculate optimal portfolios for the case in which the investor adopts a
Bayesian approach. Figure 2 reports portfolio weights as a function of T. The
effects of estimation risk manifest themselves with varying intensity at two
levels. The first major difference obtains for T ≥ 4 years, and consists in the
appearance of positive weights invested in short-term deposits, as much as 45%
for high risk aversion. Indeed, a strategy that roll over “cash” investments is
not only the safest among the available assets in terms of its overall variance,
but also the one that remains predictable with high precision from its own
lagged value, the term premium as well as the inflation rate. As a matter of
fact, the volatility of such a strategy does increase in T (see Table 5, panel c),
as the mean averting effect induced by persistence is stronger than the mean
reversion induced by links with both inflation and the term premium. However
it remains as small as 31% (i.e. 3.1% per annum) for T = 10; this is almost
four times smaller than long-term bonds, and seven to nine times smaller than
real estate and equities. Therefore—even if the real short term rate becomes
risky in our framework and overall risk is non-negligible over long horizons—
short term deposits preserve their role of safe assets in relative terms. This is
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Fig. 2 Buy-and-hold optimal
allocation—effects of
parameter uncertainty. The
graphs plot the optimal
portfolio weights as a function
of the investment horizons
when returns follow a
Gaussian VAR(1) model and
parameter uncertainty is
accounted for (i.e. Bayesian
predictive densities are
employed). The posteriors are
obtained from a standard
uninformative prior,
p(C,�) ∝ |�|−(n+2)/2 , where
C = [α′B′]′ is the matrix of
the coefficients in the VAR
model and n is the number of
variables (4) in the
multivariate system
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a strong incentive to risk-averse investors to develop a substantial demand for
short-term deposits, especially in the long-run.25

On the other hand, important modifications occur in the structure of the
investment schedules as a function of the horizon: while a classical investor
will be characterized by weights to riskier assets increasing with the investment
horizon, when parameter uncertainty is taken into account the schedule for
real estate becomes flatter and that for stocks non-monotonic. For instance,
when γ = 5 the allocation to real estate increases from 9% at 1-month to
16% at 10 years, while the allocation to stocks decreases from 23 to 20% and
describes an S-shaped behavior. When γ = 10, the equity demand schedule
turns essentially monotone decreasing. These flattening effects concerning the
portfolio share schedules of the riskier assets is well explained by the fact that
the uncertainty deriving from estimation risk compounds over time, implying
that the difficulty to predict is magnified over longer planning periods. This

25Notice that a strategy rolling over short-term deposits yields only 1.9% per annum over a 10-
year horizon. Such a cumulative return is actually inferior to the one that would be made under no
predictability (3.3% per annum).
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Fig. 3 Buy-and-hold optimal
allocation—no predictability
and parameter uncertainty.
The graphs plot the optimal
portfolio weights as a function
of the investment horizons
when returns follow a
Gaussian IID model and
parameter uncertainty is
accounted for. The posteriors
are obtained from a standard
uninformative prior,
p(μ,�) ∝ |�|−(n+2)/2, where
n is the number of variables in
the system
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means that the contrasting effects of the reduction in long-run risk resulting
from predictability—which would cause the investment schedules to be up-
ward sloping—and of estimation risk roughly cancel out for a long-horizon
investor, with the result of either flat or weakly monotonically decreasing
schedules. For instance, the cumulative excess equity return volatility for a
long-horizon investor is 283% (84% per annum), while the corresponding
perceived volatility is 214% for real estate excess returns (68% per annum).
These numbers can be contrasted both to perceived volatilities at shorter
horizons (e.g. they are both 16% for T = 2 years) and to the long-run per-
ceived volatility of long-term bonds (37% per annum), which in fact attract a
considerable share when parameter uncertainty is accounted for.

We provide a measure of the importance of predictability under para-
meter uncertainty by calculating optimal portfolio weights under the no-
predictability benchmark (4), thus quantifying the effects of parameter
uncertainty alone on optimal portfolio weights.26 Figure 3 displays results

26Details on the posterior distribution of the coefficients are available upon request.
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through the usual set of plots. Without predictability but with parameter
uncertainty, the investment schedules for both stocks and real estate are
slightly monotonically decreasing, because estimation risk is compounded
and magnified by longer and longer investment horizons. Interestingly, the
demand for cash is completely absent, also for investors with high risk aversion.
Moreover, the bond investment schedules turn now upward sloping, which
confirms that there exists a differential of estimation risk that favors bonds
over riskier instruments. Comparing Figs. 2 and 3, predictability appears to
induce several changes. There is a change in the slope of the demand for bonds,
which becomes decreasing in the investor horizon, and a positive demand
for cash investments appears. Furthermore, the real estate weight is equal
to or exceeds the equity weight at all investment horizons and for all risk
aversion parameters, when predictability is ignored in Fig. 3. On the contrary,
investment in stocks exceeds that in real estate for horizons shorter than 6
years when predictability is considered in Fig. 2. Finally, the portfolio shares
allocated to the riskier assets are considerably lower when predictability is
accounted for. This is consistent with larger degrees of parameter uncertainty
plaguing the VAR model (2) vs. the IID. one ( 4), with high posterior standard
errors characterizing many of the coefficients concerning real estate and excess
equity returns.

In conclusion, adding parameter uncertainty to the asset allocation problem
changes a few of the results found in Section Classical Portfolio Weights, but
leaves the overall picture intact: real estate is an important class that—when
predictability is measured and put to use through a Bayesian approach—ought
to receive an optimal long-run weight between 12 and 16%, depending on the
assumed coefficient of relative risk-aversion.

Welfare Cost Analysis

Even though Section Optimal Asset Allocation with Real Estate has provided
evidence that real estate enters optimal long-run portfolios with non-negligible
weights when asset returns are predictable, and that predictability affects
portfolio weights, it remains important to evaluate the effects of real estate
on the expected utility of an investor. Therefore we follow and Guidolin and
Timmermann (2005), and obtain estimates of the welfare cost of restricting the
problem in both the breadth of the asset menu and the richness of the statistical
model used to describe the multivariate process of asset returns.

Call ω̂R
t the vector of portfolio weights obtained imposing restrictions on the

problem. For instance, ω̂R
t may be the vector of optimal asset demands when

the investor is precluded from investing in real estate. Define V(Wt, zt; ω̂t) the
optimal value function of the unconstrained problem, and V(Wt, zt; ω̂R

t ) the
constrained value function. Since a restricted model is by construction a special
case of the unrestricted model:

V(Wt, zt; ω̂R
t ) ≤ V(Wt, zt; ω̂t).
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We compute the compensatory premium, π R
t , that an investor with relative risk

aversion coefficient γ is willing to pay to obtain the same expected utility from
the constrained and unconstrained problems as:

π R
t =

[
V(Wt, zt; ω̂t)

V(Wt, zt; ω̂R
t )

] 1
1−γ

− 1. (5)

The interpretation is that an investor endowed with an initial wealth of
(1 + π R

t ) would tolerate to be constrained to solve a restricted problem For
simplicity, we only consider simple buy-and-hold strategies that provide lower
bounds to the implied welfare costs, see e.g. Guidolin and Timmermann
(2005).27

Cost of Ignoring Predictability

We first calculate the π R
t implied by forcing an investor to ignore predictability

altogether, i.e. to pretend that Eq. 4 is correctly specified. As observed in
Section Optimal Asset Allocation with Real Estate, this would lead to ‘incor-
rect’ portfolio choices. We present the annualized percentage compensation
that an investor would require to ignore the evidence of predictability in
Fig. 4. In particular, panel a refers to the classical case. The implied welfare
costs from model misspecifications are higher the higher is γ . The implied
annualized welfare costs are far from negligible, and in the case of long-
horizon investors with moderate risk aversion they range between 2 and 4%
in riskless, annualized terms. Predictability is clearly most useful to a short
horizon investor, that is able to time the market. Thus, the annualized cost of
disregarding it tops 12% for T = 1 month. This means that a rational investor
with γ = 5 would require a (riskless) annual increase in the returns generated
by her portfolio in the order of approximately up to 95 basis points, for him to
accept portfolio decisions based on a misspecified IID model that disregards
predictability altogether.

Panel b of Fig. 4 presents results for the Bayesian portfolio choice case, when
estimation risk is incorporated in optimal decisions. For long horizons, the
implied utility loss is slightly lower. The reasons of the lower utility losses under
parameter uncertainty are related to the fact that for large T portfolio choices
imply substantial cash investments that are not found when predictability
is ignored. On the contrary, in the classical case departures from the IID
benchmark involve a higher demand for more profitable assets—especially
real estate. All in all, we interpret the evidence in Fig. 4 as consistent with the
idea that ignoring predictability is associated with welfare losses of substantial
magnitude.

27Under rebalancing (see Section Sensitivity of Optimal Weights to the Predictors) predictability
gives an investor a chance to aggressively act upon the information on zt; therefore ignoring
predictability when rebalancing is possible implies higher utility costs. A similar reasoning applies
to restrictions on the asset menu: depriving investors of useful assets hurts them the most the
highest is the frequency with which they can switch in and out of the assets themselves.
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Fig. 4 Welfare costs—
ignoring predictability. The
graphs plot the annualized
percentage compensatory
variation associated with
ignoring the existence of
predictability patterns in the
data, i.e. with using a
Gaussian IID model instead
of a VAR(1) model. Panel a
concerns the classical case in
which MLE parameter
estimates have replaced the
unknown coefficients; panel b
the Bayesian case in which
parameter uncertainty is
accounted for (i.e. Bayesian
predictive densities are
employed)
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Cost of Excluding Real Estate

The recent growth of the real estate fund market in several continental
European countries is likely to provide institutional investors with increasing
possibilities to access this asset class. Here we offer an estimate of the welfare
gains brought about by this development. Given that ignoring predictability is
suboptimal, especially when estimation risk is taken into account, we estimate
the welfare costs of ignoring real estate investment opportunities when the
investor exploits predictability.

As a first step, Table 6 presents classical MLE estimates for the case in
which the asset menu is limited to stock, bonds, and short term deposits.
In a restricted asset menu, the evidence of predictability remains strong
especially for excess stock returns, that can be precisely predicted by the
dividend yield, inflation and lagged stock returns. The left column of plots in
Fig. 5 shows ‘classical’ asset allocation results under this restricted asset menu.
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Table 6 Classical parameter estimates for a VAR(1) model—restricted asset menu

Stockst Bondst Dividend
yieldt

Term
spreadt

Real
short
ratet

Inflationt

μ′
−0.010 −0.012 0.001 0.005 –0.000 6.5e − 05

(−0.482) (−1.333) (0.806) (2.833) (–2.075) (0.845)
B’
Stockst−1 0.140 −0.027 −0.003 0.001 0.000 8.2e − 05

(2.149) (−0.992) (−1.636) (0.115) (0.570) (0.351)
Bondst−1 0.176 0.033 −0.006 −0.003 0.001 −0.001

(1.067) (0.486) (−1.172) (−0.219) (0.765) (−2.124)

Dividend yieldt−1 2.329 0.689 0.914 −0.011 −0.010 0.003
(2.847) (2.020) (37.74) (−0.173) (−1.861) (1.101)

Term spreadt−1 −0.442 0.124 0.026 0.888 0.009 −0.001
(−0.969) (0.651) (1.885) (24.28) (2.991) (−0.807)

Real short ratet−1 −3.006 −0.374 0.161 −0.200 1.009 0.003
(−0.874) (−0.261) (1.576) (−0.726) (46.34) (0.207)

Inflation1t−1 −19.78 −2.158 0.629 −1.339 0.205 0.927
(−2.538) (−0.664) (2.725) (−2.143) (4.151) (33.26)

The table reports the MLE estimation outputs for the Gaussian VAR(1) model: yt = μ + �yt−1 +
ηt where yt includes continuously compounded monthly excess asset returns (but not excess real
estate returns), the rate of inflation, the term spread, and the dividend yield; ηt ∼ N(0,�). t
statistics are reported in parenthesis under the corresponding point estimates. Bold coefficients
imply a p-value of 0.1 or lower

Results are consistent with the general patterns isolated in Section Optimal
Asset Allocation with Real Estate: the demand for stocks increases with the
investment horizon as their riskiness declines thanks to their predictability; on
the opposite, the bond investment schedule is downward sloping. There is no
demand for cash independently of the degree of relative risk aversion. Real
estate therefore crowds out stocks at longer investment horizons, because of
its higher profitability.

Figure 6, panel a, shows the implied welfare costs from excluding real estate
from the portfolio problem. Also in this case, we report the annualized, riskless
compensation that an investor would require to make portfolio decisions using
a restricted asset menu. The welfare cost of excluding real estate from the
asset menu is not monotone increasing in the coefficient of risk aversion:
the compensatory variation is the highest at short investment horizons for
intermediate risk aversion. This is intuitive as predictability is relatively strong
at short horizons, and it will be more risk-tolerant investors who will better
exploit it. For highly risk averse investors the compensatory variation is instead
highest at long horizons, because it mostly reflects foregone diversification
opportunities. In other words, the welfare gains from accessing real estate
originate from improvement in both diversification and predictability. In the
case of moderate risk aversion (γ = 5) the welfare loss at a short horizon of one
year only is approximately equal to 7% of initial wealth. The yearly welfare
loss naturally declines with T, although this implies that a roughly constant
portion of initial wealth would be sacrificed to obtain the possibility to invest
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(a) Classical Asset Allocation (b) Bayesian Asset Allocation
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Fig. 5 Buy-and-hold optimal allocation—restricted asset menu. The graphs plot the optimal
portfolio weights as a function of the investment horizons when returns follow a Gaussian VAR(1)
model. Three alternative coefficients of relative risk aversion are employed. The asset menu is
restricted to the riskless asset, stocks, and bonds only. Column a refers to the case in which
parameter uncertainty is ignored (i.e. classical MLE estimates are employed), column b to the
Bayesian case in which estimation risk is taken into account

in real estate. For instance, the annualized riskless compensatory variation is
73 basis points per year at T = 10 years, although this corresponds to a 7.5%
of time t wealth. Such figure more than doubles if one considers a highly risk-
averse investor under a 10-year horizon. This means that, especially under long
planning horizons, including real estate in the asset menu should represent a
primary concern for all portfolio managers.

Table 7, and Figs. 5 and 6 complete the picture by reporting results for the
case in which parameter uncertainty is kept into consideration. Table 7 gives
Bayesian posterior means and standard deviations for the restricted VAR
model that excludes real estate excess returns. Posterior means are very close
to MLE estimates, and standard errors confirm the results in Table 6: the evi-
dence of predictability is once more particularly strong for excess stock returns
and the real short term rate. Figure 5 plots instead optimal asset allocations and
obtains differences between classical and Bayesian portfolio weights consistent
with our comments in Section Optimal Asset Allocation with Real Estate:
positive weights on liquid investments appear under parameter uncertainty, as
a protective measure against the additional estimation risk deriving from the
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Fig. 6 Welfare costs—
ignoring real estate. The
graphs plot the annualized
percentage compensatory
variation associated with
ignoring real estate as an asset
class, i.e. with limiting an
investor’s portfolio choice to
stock, bonds, and cash. Panel
a concerns the classical case in
which MLE parameter
estimates have replaced the
unknown coefficients; panel b
the Bayesian case in which
parameter uncertainty is
accounted for (i.e. Bayesian
predictive densities are
employed)
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fact the coefficients are perceived to be random. Moreover, while the equity
investment schedule is generally upward sloping in a classical framework (an
effect of predictability), the Bayesian allocation to stocks tends to decline
with the investment horizon. Finally, Fig. 6 displays the annualized percentage
compensatory variation from excluding real estate from the asset menu. In this
case, results are different from the classical ones, i.e. the loss from ignoring real
estate remains below 5% per year for either highly risk-averse and/or for long-
horizon investors. This is because the real estate portfolio share, and hence
its potential for enhancing returns and lowering risk, is modest, at least when
compared to the classical case.

Robustness Checks

We conclude by performing a number of additional exercises to corroborate
our results and show that they scarcely depend on specific assumptions con-
cerning the coefficient of relative risk aversion, how the state variables are
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Table 7 Bayesian coefficient estimates for a VAR(1) model of excess returns and the dividend
yield—restricted asset menu

Stockst Bondst Dividend
yieldt

Term
spreadt

Real
short
ratet

Inflationt

μ′

−0.010 −0.012 0.001 0.005 −0.000 6.5e − 05
(0.025) (0.010) (0.001) (0.002) (0.000) (8.8e − 05)

B′

Stockst−1 0.141 −0.027 −0.003 0.001 0.000 8.2e − 05
(0.075) (0.031) (0.002) (0.006) (0.001) (0.000)

Bondst−1 0.175 0.033 −0.006 −0.003 0.001 −0.001
(0.189) (0.079) (0.006) (0.015) (0.001) (0.001)

Dividend yieldt−1 2.330 0.689 0.914 −0.011 −0.010 0.003
(0.938) (0.391) (0.028) (0.075) (0.006) (0.003)

Term spreadt−1 −0.444 0.124 0.025 0.887 0.009 −0.001
(0.521) (0.218) (0.015) (0.042) (0.003) (0.002)

Real short ratet−1 −3.012 −0.377 0.161 −0.201 1.009 0.003
(3.945) (1.640) (0.117) (0.317) (0.025) (0.014)

Inflation1t−1 −19.81 −2.156 0.630 −1.343 0.205 0.927
(8.935) (3.727) (0.265) (0.715) (0.056) (0.032)

The table reports the Bayesian posterior means for the coefficients of the Gaussian VAR(1)
model: yt = μ + �yt−1 + ηt excess asset returns (but not excess real estate returns), the rate
of inflation, the term spread, and the dividend yield; ηt ∼ N(0,�). The standard errors of the
Bayesian posterior densities are reported in parenthesis under the corresponding posterior means.
The posteriors are obtained from a standard uninformative prior, p(C,�) ∝|�|−(n+2)/2, where
C = [α′B′]′

initialized, the frequency with which portfolio re-shuffling is admitted, and
the measurement of the welfare loss implied by solving ‘standard’ portfolio
problems in which the predictable nature of risk premia is ignored and the
attention is focused on a standard mean-variance benchmark. For all experi-
ments, wherever results are not fully reported in the paper, further details are
available upon request.

Low Risk Aversion

Although the equity premium literature points to the use of relatively high
relative risk aversion in portfolio choice applications (such as γ = 5, 10),
part of the literature (e.g. Brennan et al. (1997) and Barberis (2000)) has
experimented with lower coefficients, typically γ = 2. Figure 7 reports a few
results under this assumption, focussing on the simple case of a buy-and-
hold investor. The two panels of the figure show that not only our results
on the importance of real estate as an asset class are robust to using lower
risk aversion levels, but also that as a matter of fact a relative risk-insensitive
investor ought to aggressively invest in real estate, thus exploiting its high
Sharpe ratio. For instance, a long run classic portfolio optimizer (panel a)
ought to invest 88% in real estate, 12% in stocks, and nothing in bonds.
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Fig. 7 Buy-and-hold optimal
allocation—low risk aversion.
The graphs plot the optimal
portfolio weights as a function
of the investment horizons
when returns follow a
Gaussian VAR(1) model. A
coefficient of relative risk
aversion of 2 is employed.
Panel a concerns the classical
case in which MLE parameter
estimates have replaced the
unknown coefficients; panel b
the Bayesian case in which
parameter uncertainty is
accounted for (i.e. Bayesian
predictive densities are
employed)
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When parameter uncertainty is taken into account (panel b), the structure of
portfolio weights is not radically changed at short horizons; for instance, the 1-
month allocation is identical to the one derived ignoring parameter uncertainty
as an investor who is not strongly risk averse will not be greatly affected by
additional estimation risk. The 10-year Bayesian allocation is instead 45% in
real estate, 24% in stocks, and 31% in bonds, closer to an equally-weighted
portfolio. In any event, under low risk aversion, it is clear that real estate plays
a much bigger role, with weights above 30% for horizons longer than 2 years.

Sensitivity of Optimal Weights to the Predictors

With limited exceptions, all of our simulation experiments have been based
on initializing the variables with a strong predictive content (i.e. the dividend
yield, the term spread, the inflation rate, and the 1-month real rate) to their
full-sample means (see Table 1). Under this assumption, we have found that
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under predictable risk premia, real estate represents an important asset class in
optimal long-run portfolios. However, it is natural to ask whether this conclu-
sion is robust to different assumptions concerning the starting value assigned
to the predictors in our simulations, especially because Table 1 implies that a
wide range of values for the term spread (between −0.015 and 0.033 on a yearly
basis) and the dividend yield (between 1.74 and 3.76% in annualized terms)
have to be considered ‘plausible’ as they fall in a 90% confidence interval.28

Figure 8 plots the resulting optimal asset allocation choices as the initial values
of the predictors are changed over a wide range of possible initial values in
simulation experiments. In each experiment, we set the values of all variables
in the model (2) to correspond to their sample means and change the target
predictor variable over a wide range of values. For each predictor variable,
two exercises are performed, in correspondence to a short (T = 12) vs. a long
(T = 120) horizon. To simplify calculations, we only report classical results
that ignore parameter uncertainty. The qualitative insights are similar for the
Bayesian case.

Over short horizons, real estate optimal portfolio holdings are scarcely
sensitive to the starting value of the dividend yield (apart from the sub-interval
1.3–1.8%, characterized by very low dividend yields), while they are strongly
monotonically decreasing in the value for the term spread, the inflation rate,
and the real short term rate. This finding matches the negative signs of the
coefficients on these three predictors in the MLE results reported in Table 3:
higher values of the predictors forecast lower real estate risk premia over
horizons of 1 year or less. In particular, the effect is quantitatively strong
for the term spread and the inflation rate, implying that over short intervals,
real estate presents a risk-return trade-off which is (comparatively) worsened
by both increasing inflation and by a steepening yield curve. Consistent with
standard intuition, the investment in real estate declines as real interest rates
grow, also because short-term deposits represent a competing asset class. Over
a 10-year horizon, the real estate holdings are strongly increasing in both the
real short and the inflation rates. The latter finding may be interpreted as a
consequence of the ability of real estate to offer a long-term hedge against
inflation: the slope of the real estate demand curve is particularly steep when
current inflation moves from very low (0.2% a year) to intermediate levels
(2.1%). All in all, unless one focuses on rather extreme configurations (of
zero inflation, negative real interest rates, and inverted yield curve) of the
economic predictors, we obtain again that the real estate weight is always is
approximately 20%, while values of the predictors exist for which the weight
approaches 40%.

Over short horizons, the sensitivity patterns of equity holdings to changes
of the predictors is similar to real estate, although the equity schedules are
generally flatter. In the long-run however, the equity holdings behave rather
differently than real estate: they monotonically increase in the dividend yield,

28The range of plausible values is narrower for the inflation rate (from 2.12 to 3.08%) and real
short term rate (from 2.44 to 4.36%), both in annualized terms.
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Fig. 8 Sensitivity of optimal portfolio weights to predictor values. The graphs plot the optimal
portfolio weights to each asset class as a function of alternative values of the predictors (divi-
dend yield, term spread, real short term interest rate, and inflation rate) under two alternative
assumptions on the investment horizon (1 and 10 years). Excess asset returns are assumed to
follow a Gaussian VAR(1) model and estimation is performed either with classical (MLE) (i.e.
disregarding parameter uncertainty) methods. Portfolio weights are computed assuming a relative
risk aversion coefficient of 5

and they strongly decrease in the term spread, the real short term rate, and
inflation. The first two results illustrate the standard logic that an increasing
real cost of capital (especially as measured by long-term interest rates) fore-
casts declining firm values and therefore an adverse risk-return trade-off for
equities. The shape of the schedule as a function of inflation stresses that stocks
are hardly a good long-term hedge against inflation, to the point that a rational
long-run investor progressively reduces the equity weight as current inflation
increases and anticipating (notice that inflation is a persistent process) future,
higher inflation.

Finally, the schedules characterizing bonds are opposite to those for real
estate and equity over a one-year horizon; in particular, they are strongly
upward sloping as a function of the term spread, the real short rate, and
inflation. While the first two findings are hardly surprising—even ignoring
predictability, it is clear that increasing real short term rates (given the shape
of the yield curve) or a steeper term structure (given the short real rate)
increase the expected return on long-term bonds—the sensitivity to inflation
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shows that over short horizons it is bonds that manage to provide the best
protection against inflation. This means that already in the first year following
an inflation shock the returns to a basket of constant maturity bonds suffer
of the inflation shock less than equities and real estate do. However, for
long-horizon investors, bond holdings are generally flat and display moderate
sensitivity to the predictors.

Dynamic Rebalancing

An investor who follows a buy-and-hold strategy chooses the optimal allo-
cation at the beginning of the planning horizon (t) and does not modify it
until the end-point (t + T) is reached. Clearly, when T is large, this represents
a strong commitment not to revise the portfolio weights despite the receipt
of news characterizing the investment opportunity set. Under a rebalancing
strategy, the investor chooses the asset allocation at the beginning of the
planning horizon taking into account that it shall be optimal to modify the
portfolio weights at intermediate dates (rebalancing points), t + ϕ, t + 2ϕ, ...,
t + T − ϕ. Appendix: Dynamic Rebalancing Strategies reports details on the
implied dynamic programming problem and related solution methods.

We assess the effects of dynamic rebalancing by computing portfolio allo-
cations when adjustment to the allocation is admitted every year. Initially, we
use J = 6 discretization points for each of the predictor variables employed in
our study. For simplicity, we ignore parameter uncertainty. Also in this case to
obtain a “representative” calibration, we set the predictors to their full-sample
means. Panel a of Fig. 9 shows optimal portfolio weights as a function of the
investment horizon when the coefficient of relative risk aversion (γ ) is set to 5.
A comparison with Fig. 1 reveals two important changes. First, rebalancing
flattens the portfolio investment schedules for horizons T exceeding the
rebalancing frequency ϕ. Careful analysis of the plots reveals that differences
between optimal weights at T = 4 and at T = 10 years are negligible. This
makes sense as two investors with either a four or a 10-year horizon who
anticipate unrestricted changes to their optimal portfolios in only 12 months
are unlikely to drastically differ in their current portfolio choices. The fact that
rebalancing tends to flatten optimal investment schedules for T >> ϕ has been
observed already by Brandt (1999) and Guidolin and Timmermann (2004,
2005) in related applications. Second, differences between the rebalancing
and buy-and-hold cases are modest but visible: rebalancing opportunities tend
to increase the long-run optimal weight of stocks and bonds, while reducing
the weight of real estate.29 Overall, setting the predictors to their sample
means may suggest some caution to a rational investor, who then waits for an
improvement in the investment opportunities by going longer in the relatively
safe (especially over a relatively short period) bonds. In general, even when

29For instance, at T = 10 years, the optimal weights in real estate under rebalancing is 36% (vs.
44% under no buy and hold) while the weights of stocks and bonds are 35 and 29% (vs. 33 and
23% under buy and hold).
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Fig. 9 Optimal dynamic
portfolio allocation under
predictable returns. The
graphs plot the optimal
portfolio weights as a function
of the investment horizons
when returns follow a
Gaussian VAR(1) model and
the investor rebalances her
portfolio once a year. The
variables are initialized at
their sample mean. Panel a
refers to the case in which all
of the predictors are
considered but a coarse
(5-point) grid is employed,
panel b to the case in which
the term spread is held at its
sample mean but a finer
12-point grid is used. When
the horizon T is inferior or is
equal to the rebalancing
frequency ϕ = 12 months,
optimal weights coincide with
those obtained under
buy-and-hold
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(b) Fine grid – Term spread fixed at sample mean
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rebalancing is admitted, real estate remains an important asset class, receiving
a weight always in excess of 20% for all horizons that exceed the annual
rebalancing frequency.

Panel b of Fig. 9 reports the results of robustness checks that use J = 12
grid points to achieve a higher degree of discretization accuracy. Since double-
digit values of J translate into millions of combined discretization points (their
number equals Jn), in this case we fix the value of excess asset returns and of
the term premium to their sample means and simply discretize the support of
the dividend yield, the real short term rate, and of inflation (for a total of 123 =
1, 728 discretization points).30 The results on portfolio weights are qualitatively
identical to those in panel a and confirm that real estate plays an important

30Fixing the term premium to its mean is clearly arbitrary and we justify this choice on the basis
of the weak predictability results involving this instrument in Table 3. Further robustness checks
with a 2-year horizon but 125 = 248, 832 grid points (i.e. in which the term premium and excess
real estate returns are discretized as well) confirm that our insights are qualitatively robust.
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role in long-run portfolio choices even assuming that regular rebalancing is
admitted.

Welfare Costs of Excluding Real Estate Under Constant
Investment Opportunities

In Section Welfare Cost Analysis the long-run welfare costs of ignoring
predictability exceeds 200 basis points per year, i.e. a rational investor should
request a riskless increase in returns of the order of 2% a year, or more.
A similar result was obtained for the compensatory variation that should
be required to ignore real estate as an asset class in addition to stocks,
bonds, and cash. However, this last estimate has been obtained assuming that
predictability should and would not be ignored by a rational portfolio manager.
Even though the statistical evidence in favor of the existence of predictability
patterns in mean excess returns is strong and a welfare cost exceeding 2% a
year ought to be a major incentive for investors not to ignore predictability, it
remains interesting to repeat the calculations of Section Welfare Cost Analysis
when predictability is ignored and excess returns are generated by the simple
model (4).

In the classical case, we obtain a picture that is very similar to Fig. 4a: in
the long-run, the cost of excluding real estate grows with the coefficient of risk
aversion; for long-run investor with γ = 5, the cost is in the order of 240 basis
points a year, and this estimate grows to exceed 400 basis points when γ = 10 is
considered. This implies that the cost of ignoring real estate scarcely depends
on the whether predictability is modeled or not, although it is clear that the
welfare gains from doing so remain substantial.

Similar calculations are performed in the Bayesian case. We find that
welfare costs of ignoring real estate are actually higher when predictability
is ignored altogether.31 In fact, Fig. 3 has shown that the optimal real estate
weight is higher by 10–15% vs. the case in which predictability is taken into
account (Fig. 2). This is easily explained by the fact that real estate excess
returns were characterized by weaker predictability patterns than stocks so
that the demand for real estate is hurt.32 In this sense, restricting our exercise to
the case of i.i.d. excess asset returns may bring—when parameter uncertainty
is taken into account—to a higher estimate of the utility loss deriving from
ignoring real estate. In conclusion, the welfare losses reported and discussed in
Section Welfare Cost Analysis represent a lower bound for the utility costs of
omitting real estate when choosing optimal European portfolios.

31For instance, assuming γ = 5, the cost for a 10-year horizon investor exceeds 310 basis points a
year.
32For instance, in Table 3 the coefficients with which real excess returns load on lagged dividend
yields and inflation rates are characterized by sensibly lower t-ratios.
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Conclusions

In this paper we have documented the existence of linear predictability
patterns—described by a simple VAR(1) framework—in an asset menu that
involves both financial and real estate excess returns. In particular, excess stock
and bond returns predict subsequent real estate excess returns. Moreover,
real estate performance is negatively related to the lagged short term real
rate and to past inflation, while the dividend yield has predictive power for
all excess return series and the real 1-month T-bill. These facts cause the
risk-return trade-off characterizing real estate to improve as the investment
horizon lengthens, in the sense that its expected annualized risk premia grows
even faster. As a result, when we calculate optimal portfolio weights based
on the MLE estimates of the VAR coefficients, we find portfolio weights
for real estate that are increasing in the planning horizon. Stocks, bonds,
and real estate do not appear excessively risky (once their risk premia are
taken into account) to a long-run investor, so that the demand for cash is
rather limited or even absent. These findings are qualitatively robust to the
adoption of a Bayesian approach that incorporates estimation risk into the
formal portfolio problem, although the trade-off between predictability and
parameter uncertainty makes for flatter—often non-monotonic—investment
schedules, while at the longest horizon some demand for short-term deposits
appears. Finally, real estate appears as a poor instrument to cover inflation risk
in the short run, while in the long run it is the best inflation hedge as suggested
by its long run optimal portfolio share being strongly upward sloping in the
current rate of inflation.

We find that real estate should play a considerable role, both in terms of
portfolio weights and in welfare terms: the compensatory variation required
by an investor to do without real estate is easily in excess of 200 basis points
per year. This conclusion echoes recent findings by Chun et al. (2004) on the
asset pricing properties of real estate. Although the welfare costs deriving
from ignoring predictability would be of similar importance, the conclusions
above concerning the utility loss from expelling real estate from the asset
menu do not depend on the finding of predictability. As a matter of fact, our
robustness checks suggest that our estimates for the optimal real estate weights
and welfare losses from restricting the asset menu are probably only a lower
bound for higher estimates obtainable under alternative assumptions. It would
be interesting to perform some of the calculations in this paper using indirect
indices, that traditionally imply a much smaller correlation with stock and bond
returns and hence offer greater diversification opportunities.

The observed divergence in asset holdings of European pension funds
mentioned in the Introduction can be dictated by institutional reasons.
However, our paper implies that preferences and horizons exist that justify
both the British and the continental European patterns. In particular, the
German-French pattern is consistent with the rational choices of portfolio
managers that display high risk aversion, worry about estimation risk, and have
investment horizons between 1 and 4 years. On the contrary, investing four-
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fifths of one’s wealth in (highly) risky assets—as in the Anglo-Saxon pattern—
may be optimal for long-horizon investors with low risk aversion and who
disregard parameter uncertainty. However, in this case real estate ought to
receive a weight at least as important as stocks, which is not the case in
practice. This can be due to our consideration of stock-based indices, while
most European institutions routinely confine their portfolios to real property.
While this observation calls for replicating this analysis on indirect indices, it
should be stressed that developments in the real estate funds industry justify
our current choice.

There are many issues that this paper merely touches upon. In particular, we
have ignored transaction costs. On one hand, this is consistent with our use of
an indirect real estate index based on the market price of the equity issued by
companies involved in real estate operations: it makes sense to entertain the
assumption that the frictions associated in trading in these companies may not
be structurally different from the market average. Furthermore, even assuming
that publicly-traded real estate vehicles imply higher transaction costs than
other securities, it is difficult to think that such a differential exceeds a full 1–
2% of total initial wealth of the investor. On the other hand, recent papers
(e.g. Balduzzi and Lynch 1999) have shown how dynamic portfolio choices
may be computed in the presence of transaction costs. Such an effort seems
to be particularly appropriate for addressing direct property investments.
Finally, recent work by Hoevenaars et al. (2005) reports a high welfare cost
from ignoring liabilities when solving the strategic asset allocation problem
faced by institutional investors. Under the condition that real estate holdings
may be useful hedges against the interest rate and inflation risks of a given
stock of liabilities, our estimate of the utility loss from excluding real estate
from portfolio choices may be biased downwards. We leave these further
explorations for future research.
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Appendix: Dynamic Rebalancing Strategies

In this section we review the structure and solution methods for a portfolio
choice problem when returns are predictable and when the uncertainty about
the extent of predictability is taken into account. The methodology follows
Kandel and Stambaugh (1996) and Barberis (2000) and so we only briefly
discuss the main issues and technical details.

Long run portfolio strategies may be calculated under two alternative
assumptions: buy-and-hold vs. optimal rebalancing. An investor who follows
a buy-and-hold strategy chooses the optimal allocation at the beginning of
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the planning horizon (t) and does not modify it until the end-point (t + T)
is reached. Clearly, when T is large, this represents a strong commitment not
to revise the portfolio weights despite the receipt of news characterizing the
investment opportunity set. Under a rebalancing strategy, the investor chooses
the asset allocation at the beginning of the planning horizon taking into
account that it shall be optimal to modify the portfolio weights at intermediate
dates (rebalancing points), t + ϕ, t + 2ϕ, .., t + T − ϕ. In the following we
separately describe the relevant methods distinguishing between buy-and-hold
and rebalancing.

Classical Buy-and-hold Investor

Call θ the vector collecting all the parameters entering Eq. 2, i.e. θ ≡ [μ′
vec(�)′ vech(�)′]′. Under Eq. 2, the (conditional) distribution of cumulative
future returns (i.e. the first four elements in zt,T ≡ ∑T

k=1 zt+k) is multivariate
normal with mean and covariance matrix given by the appropriately selected
elements of:

Et−1[zt,T ] = Tμ + (T − 1)�μ + (T − 2)�2μ +
.. + �T−1μ + (� + �2+.. + �T)zt−1

Vart−1[zt,T ] = � + (I + �)�(I + �)′ + (I + � + �2)�(I + � + �2)′ +
..+(I + � + .. + �T−1)�(I + � + .. + �T−1)′, (6)

where I is the identity matrix of dimension n and �k ≡ ∏k
i=1 �. Since the

parametric form of the predictive distribution of zt,T is known, it is simple to
approach the problem in Eq. 1, or equivalently

max
ωt

∫
W1−γ

t+T

1 − γ
φ

(
Et[zt,T ], Vart[zt,T ]) · dzt,T (7)

where (φ
(
Et[zt,T ], Vart[zt,T ]) is a multivariate normal with mean Et[zt,T ] and

covariance matrix Vart[zt,T ]), by simulation methods. Similarly to Kandel and
Stambaugh (1996), Barberis (2000), and Guidolin and Timmermann (2005),
this means evaluating the integral in Eq. 7 by drawing a large number of times
(N) from φ

(
Et[zt,T ], Vart[zt,T ]) and then maximizing the following functional:

max
ωt

1

N

N∑
i=1

⎡
⎢⎣

{
ωs

t exp(Rs,i
t,T ) + ωb

t exp(Rb ,i
t,T ) + ωr

t exp(Rr,i
t,T ) + (1 − ωs

t − ωb
t − ωr

t ) exp(R f,i
t,T )

}1−γ

1 − γ

⎤
⎥⎦ ,

(8)

where [Rs,i
t,T Rb ,i

t,T Rr,i
t,T R f,i

t,T ]′ represent the first four elements of zi
t,T along

a sample path i = 1, ., N. At this stage, the portfolio weight non-negativity
constraints are imposed by maximizing Eq. 8 using a simple two-stage grid
search algorithm that sets ω

j
t to 0, 0.01, 0.02, .., 0.99, 0.9999 for j = s, b , r.
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Bayesian Buy-and-hold Investor

Given the problem

max
ωt

∫
W1−γ

t+T

1 − γ
p(zt,T |Z̈t, θ)p(θ |Z̈t) · dzt,T ,

the task is somewhat simplified by the fact that predictive draws can be
obtained by drawing from the posterior distribution of the parameters and
then, for each set of parameters drawn, by sampling one point from the
distribution of returns conditional on past data and the parameters. At this
point, Eq. 2 can be re-written as:

⎡
⎢⎢⎢⎣

z′
2

z′
3
...

z′
t

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 z′
1

1 z′
2

...
...

1 z′
t−1

⎤
⎥⎥⎥⎦

[
μ′
�′

]
+

⎡
⎢⎢⎢⎣

ε′
2

ε′
3
...

ε′
t

⎤
⎥⎥⎥⎦ ,

or simply Z = XC + E, where Z is a (t − 1, n + 1) matrix with the observed
vectors as rows, X is a (t − 1, n + 2) matrix of regressors, and E a (t − 1, n + 1)
matrix of error terms, respectively. All the coefficients are instead collected in
the (n + 2, n + 1) matrix C. If we consider the following standard uninforma-
tive diffuse prior:

p(C, �) ∝ |�|− n+2
2 ,

then the posterior distribution for the coefficients in θ, p(C, �−1|Z̈t) can be
characterized as:

�−1|Z̈t ∼ Wishart(t − n − 2, Ŝ−1)

vec(C)|�−1, Z̈t ∼ N
(
vec(Ĉ), � ⊗ (X′X)−1

)
where Ŝ = (Z − XĈ)′(Z − XĈ) and Ĉ= (X′X)−1X′Z, i.e. the classical OLS
estimators for the coefficients and covariance matrix of the residuals.

Also for the Bayesian case, we adopt a simulation method that: First, draws
N independent variates from p(C, �−1|Z̈t). This is done by first sampling from
a marginal Wishart for �−1 and then (after calculating �) from the conditional

N
(
vec(Ĉ), � ⊗ (X′X)−1

)
, where Ĉ is easily calculated. Second, for each set

(C, �) obtained, the algorithm samples cumulated returns from a multivariate
normal with mean vector and covariance matrix given by Eq. 6. Given the
double simulation scheme, in this case N is set to a relatively large value of
300,000 independent trials.

Dynamic Rebalancing Strategies

The solution method is in this case based on standard dynamic programming
principles and on a discretization of the state space. Divide the interval [t, T]
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into B ≥ 1 intervals [t, t + ϕ], [t + ϕ, t + 2ϕ], .., [t + (B − 1)ϕ, t + Bϕ], where
B = T/ϕ and assume the rebalancing occurs at regular intervals B times over
[t, T]. The problem is then similar to Eq. 1, with the only difference that the
objective has to be maximized by choosing the entire sequence {ωt+ϕ}B−1

ϕ=0 :

max
{ωt+kϕ}B−1

k=0

Et

[
W1−γ

t+T

1 − γ

]

s.t. Wt+(k+1)ϕ = Wt+kϕ[ωs
t+kϕ exp(Rs

t+kϕ,t+(k+1)ϕ) + ωb
t+kϕ exp(Rb

t+kϕ,t+(k+1)ϕ) +
+ ωr

t+kϕ exp(Rr
t+kϕ,t+(k+1)ϕ) + (1 − ωs

t+kϕ − ωb
t+kϕ − ωr

t+kϕ)

× exp(R f
t+kϕ,t+(k+1)ϕ

ϕ)]
where cumulated returns R j

t+kϕ,t+(k+1)ϕ
≡ ∑ϕ

i=1(r
j
t+i + r f

t+i) ( j = s, b , r) are de-
fined similarly to Section Classical Portfolio Choice. Standard arguments show
that under a power utility function the value function of the problem is
homogeneous in wealth, i.e.

V(Wt+kϕ, zt+kϕ) ≡ max
{ωt+kϕ}B−1

k=0

Et+kϕ

[
W1−γ

t+T

1 − γ

]
= W1−γ

t+kϕ

1 − γ
Q(zt+kϕ).

This fact suggests solving the problem by backward induction, starting at time
t + (B − 1)ϕ and working to time t. The solution is approximate in the sense
that it is based on a discretization of the space for the state vector z on a
discrete grid of J points, say z j, j = 1, ., J. In fact, at time t + (B − 1)ϕ the
problem simplifies as Q(z j

t+(B−1)ϕ) = 1 ∀ j, i.e. at the end of the investment
horizon the investor ought to solve

max
ωt+(B−1)ϕ

Et+(B−1)ϕ

[
W1−γ

t+T

1 − γ

]
, (9)

which is a simple buy-and-hold problem with horizon ϕ. If the process of
excess asset returns is described by Eq. 2 and parameter uncertainty is ignored,
then Eq. 9 has a simple solution that can be found using the results in
Section Classical Portfolio Choice, as the multivariate density for z remains
normal p(Et+(B−1)ϕ[zt+(B−1)ϕ,T ], Vart+(B−1)ϕ[zt+(B−1)ϕ,T ]) with moments given
by Eq. 6 when zt+(B−1)ϕ = z j

t+(B−1)ϕ , j = 1, ., J. For instance, provided N is
large enough, an approximate solution will be found by maximizing N−1∑N

i=1

(
Wi

t+T

)1−γ
/(1 − γ ), where Wi

t+T is found on the simulated path i. Define
then Q(z j

t+(B−1)ϕ) as maximized expected utility ϕ periods before terminal
time T when p(Et+(B−1)ϕ[zt,T ], Vart+(B−1)ϕ[zt,T ]) is conditional on zt+(B−1)ϕ =
z j

t+(B−1)ϕ. Then for j = 1, ., J, ω̂
j
t+(B−2)ϕ will be found by solving (by simulation,

using a multivariate normal conditional on z j
t+(B−2)ϕ)

max
ω

j
t+(B−2)ϕ

Et+(B−2)ϕ

[
W1−γ

t+(B−1)ϕ

1 − γ
Q(z j

t+(B−1)ϕ)

]
,
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thus yielding J new values, Q(z j
t+(B−2)ϕ) j = 1, ., J. The process is to be

continued until t + (B − B)ϕ = t, i.e. until a vector ω̂
j
t j = 1, ., J emerges

from expected utility maximization. By construction, each ω̂
j
t is matched to

a z j
t . Although in general the observed zt differs from z j

t on the grid, simple
interpolation algorithm will then be used to determine ω̂t using the two closest
values of ω̂

j
t . For the calculations that follow, we use two alternative values

of J, 6 and 12 discretization points, and a number of Monte Carlo trials
N = 100, 000.
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